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Efficient Nearly Orthogonal Deletion Designs

by

Subir Ghosh*

University of California
Riverside, CA 92521

and

Joan Mahoney

University of California, Irvine and
Hughes Aircraft Company

0. Summary

This article considers single replicate factorial experiments in

incomplete blocks. A single replicate 2m j x 3m2 deletion design in in-

complete blocks is obtained from a single replicate 3m (m - m + M2 ) pre-

liminary design by deleting all runs (or treatment combinations) with the

firs' m, factors at the level two. A systematic method for determining

the unbiasedly estimable (u.e.) and not unbiasedly estimable (n.u.e)

factorial effects is provided. Although the method is discussed for

single replicate 2 1  3deletion designs in three incomplete blocks,

the method can easily be extended to more than three blocks. It is shown

that for m2 > 0 all factorial effects of the type Ftl... mF-m1lmi F
m2 1 M I'1 1 +

= 0, 1 for i = 1,...,ml, aj 1 0,1,2 for i = ml+l,...,m, (al,... ,am)

# (...,, ( +m+... am) * ci ' ' I where a = 1 and 2, are u.e. and

the remaining factorial effects are n.u.e. It is noted that (21 - 1)

*The work of the first author is sponsored by the Air Force Office of

Scientific Research under Grant AFOSR-88-0092.
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factorial effects of 2 factorial experiments and (3m2 -3 ) factorial Imn2  mlIn

effects of 3 factorial experiments, which are embedded in 2 x 3m 2

factorial experiments, are u.e. The 2 x 3m
-1 deletion designs were con- r

sidered in the work of Voss (1986). Defining factorial effects of a t
ml 32

2 x 3 factorial experiment in a form different than in Voss (1986), a d

simple representation of u.e. and n.u.e. factorial effects is obtained. t

In this representation, there are (2m1 +1+) n.u.e. factorial effects (
a a

a mI m1+l a
of the type F ...F IF1...F m . This number is smaller than the b1 I ml+1 i

corresponding number of n.u.e. factorial effects in the representation of

Voss (1986). The relative efficiencies in the estimation of factorial no
In1  32 pr

effects of 2 x 3 deletion designs are also given.

KEY WORDS: Confounding, Factorial experiment, Single replicate, bl
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1. Introduction

There is a vast literature on the construction of orthogonal single

replicate factorial designs in incomplete blocks. The reader is referred

to Voss (1986) for the list of references. The concept of deletion

designs was introduced in Kishen and Srivastava (1959). The deletion

technique in deletion designs was then used by many authors (see Addleman

(1962, 1972), Margolin (1969), Sardana and Das (1965), Voss (1986)).

This article considers 2
m l x 3

m 2 deletion designs in three incomplete

blocks and then presents a systematic method for finding the u.e. and

n.u.e. factorial effects. The smaller values of m i and m2 are the most

practically important cases.

For n.u.e. factorial effects, the biased estimators (biased w.r.t

block effects) are called the unadjusted estimators. Under the assump-

tion that certain higher order interactions are negligible, the unbiased

estimation of block effects contrasts and n.u.e. factorial effects,

excluding the general mean, are possible. This makes the deletion design

an orthogonal design. The unbiased estimators of n.u.e. factorial

effects under the assumption are called the adjusted estimators.

The relative efficiency in the estimation of a factorial effect is

the ratio of the variance of the unadjusted estimator divided by the

variance of the adjusted estimator. Observe that for u.e. factorial

effects there is no need for adjustment and hence the relative efficiency

is unity. For n.u.e. factorial effects the relative efficiency is less

than unity. The closer the value of the relative efficiency to unity

implies the lesser effect nf adjustment to the variance of the estimator.
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Definition and notation are given in section 2. Section 3 presents (

the systematic method of determining u.e. and n.u.e, factorial effects.

Section 4 discusses the relative efficiency with an illustrative

example. Section 5 presents some miscellaneous results.

2. Definition and Notation

Consider a single replicate 21 x 32 factorial experiment in in-

complete blocks. There are m, m - ml + m2 , factors in the experiment.

The runs are denoted by (x ,...,x I xm +i,...,X,), where xi W 0,1, for
1 , 1

i = ml + 1,...,ml and xi = 0,1,2, for i - ml+l,...,m. The runs and their

effects are denoted by the same notation. The factorial effects are de-

I  m 1m+1 a

ai = 0,1,2 for i - ml + The observation on the run (Xl,...xm)

is denoted by YlXl,...Xm). The fixed effect model assumed is

E~y~xlx1,.., (x1 ,...,X )+s ,

V y Xl,...,x m ) a,

Cov(y(x1,...,xm), y(xj,...,X')) = 0, (1)

where Bj is the fixed effect of the Jth block containing the run

Xl, ...,X ), 02 and Bj J = 0,1,2) are unknown constants. Recall that

the effect of the run (X1,...,xm) is denoted by the same notation

Xl,...,Xm ). The notation a1X1 +...+a mxm u represents the sum of

all 2 points (xl,..•,xm ) which are solutions of alxl+...+am x u1

over the Galois Field GF(2), u1 = 0,1. Again the notation
in2 -

1

{am +ixm i++...+a Xm M u 2 represents the sum of all 3 points
m1 +x11 m 2t
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(x. +l,...,x ) which are solutions of a1+1xm ++.*.+aX M u2 over the1 mm I+Im11 m

Galois Field GF(3), u2 - 0,1. The Kronecker product of

aI Xl+...+a Xm = Ulf and {a+ +. + a m x m  u21 is denoted by

faixi+'"+a m x ® U1 1 3 I +IXm l++ .'.+06 xm u2j and it represents

the of all 21 32 run effects (x1 ,...,x m,x m+1 , . . . ,xm) where

(xl,...,xmI ) is a solution of tlx +...+ai xm - u, over GF(2) and

(xmI+l,...,Xm) is a solution of a m +Xm1+...+a mx - u2 over GF(3).
isamale I. Consmme2 GF(3)3

Example 1. Consider a 2 x 3 factorial experiment. We have mI - 2,

m 2 = 2 and m = m I + m2 = 4. The notation Ix1 + x2 = Of represents the

sum 0,0) + (I,i). The notation Ix3 + 2x4 - 1} represents the sum

(i,0) + (0,2) + (2,1). The Kronecker product {x1 + x2 - 0 Q

{x3 + 2x4 = 11 represents the sum of run effects, (0,OiO) + (0,0,0,2) +

(0,0,2,1) + (1,1,I,0) + (1,1,0,2) + (1,1,2,1).
m1  3m2

The factorial effects of a 2 x 3 factorial experiment are

defined in terms of run effects by

a F am a 1 +1 a
F ... F F ..
1 m m1+1 m

c0 {cIxi+...+a"M I X = = of + c l[al+m+ l +..+am 1m i]

® dla 1+1 x 1+1 +.,.+amxm = 01 + d1 a m1+, 1 +1 +...+ax =x11

+ d2{ a 1x 1 +..+L x = 21 1 (2)

where the coefficients co, Cl, do, d I and d2 are given in Table 1.
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Table I

The coefficients co , c1 , do, di and d2 in the equation (2)

c0  c I  d0  d I  d 2

( 1,.. 1( m +_ ' - 0 1 1 , 1) r

*0 0 -1 1 1 1 1 e

=0 0

d
i) the first nonzero element in 1 1 -1 0 1

(a +,..., ) is 1. b

i
(ii) the first nonzero element in 1 1 1 -2 1

(a +1,..a is 2.
1 a

*0 *0

(i) the first nonzero element in -1 1 -1 0 1

(am+,,...,a ) is I. B

(ii) the first nonzero element in -1 1 1 -2 1

( +i,...1 %M) is 2. BI

Example 2. In Example 1, the factorial effect F F2 is defined by
2 3

F23 = [{x2 ' O} + {x2 = I}] (D [{x 3 = OJ -2 {x3 " 11 + 1x 21
[ -(0,O) - (1,0) + (0,I) + (1,10]B

® [(0,0) + (01) + (0,2) -2 (1,0) -2 (1,1) -2 (1,2)

+(2,0) + (2,1) + (2,2)] It

= - (0,0,0,0) -...+2 (0,0,I,0) +...- (0,0,2,0) -...+ (1,1,2,2,). re

It
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m I m2

A 2 x 3 deletion design D in three incomplete blocks is de-

scribed below. The deletion design D is used throughout the discussion.

Consider a 3m factorial experiment in 3 blocks by confounding the two

degrees of freedom in F F2 .F and F2F2 ...F2. The block u consists of
1 m 2 m

runs which are solutions of the equation xl+*.+Xm = u, u - 0,1,2. From

every block, the runs with the level 2 for the first m1 factors are

deleted. The resulting design is D with 2 1 x 3 2  runs in every

block. It is assumed that m2  1 1. The design D for m2 - 0 is discussed

in Section 5.

Example 3. The runs in the three blocks of a 22 x 32 deletion design D

are given below.

0 0 0 1 1 1 0 0 0 1 1 1

BlockO0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 2 2 0 1 2 0 1 1 0 2
0 2 1 0 2 1 0 2 1 0 1 2

0 0 0 1 1 1 0 0 0 1 1 1
Block 1 0 0 0 0 0 0 1 1 1 1 1 11 0 2 0 1 2 0 1 2 2 0 1

0 1 2 0 2 1 0 2 1 0 2 1

0 0 0 1 1 1 0 0 0 1 1 1

Block 2 0 0 0 0 0 0 1 1 1 1 1 1
2 0 1 1 0 2 1 0 2 0 1 2
0 2 1 0 1 2 0 1 2 0 2 1

It is to be noted that in every block there are 12 runs and the columns

represent the runs.
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The least squares estimators of u.e. factorial effects

L Cm CL t +aI  1 1~ a 1I  1 1.+ a
F ...F F ...From is F I ...F F + F...m which is obtained by re-1 m 1 m 1 m 1 m I m+I m

placing the run effect (Xl,...,xm ) with the observation y(xl,...,xM) in

(2). For n.u.e. factorial effects, the same method yields biased (non-

adjusted) estimators.

Let Bu(u - 0,1,2) be the sum of all run effects in the uth block.

Let X - - B I + B2 and Y - 2B0 - B 1 - B2. Clearly X and Y are confounded

with the blocks in D. Let Bu alXl+..x+amlxm I i), i - 0, 1, u = 0,1,2,

denote the sum of all run effects satisfying aixl ...++am 1 i in the

uth block. Notice that Bu - BucalX 1+...+amlx = O) +

B (a 1 x1 +...+az,1)1

Example 4. Consider the block 0 in Example 3. Observe that

BolX1 + x2 - o) - (o,o,o,o) + (0,0,1,2) + (o,c,2,1)
+ (1,1,0,1) + (1,1,1,0) + (1,1,2,2),

1(xI + x2 - 1) + (1,0,2,0) + (1,0,0,2) + (I,O,1,1)

+ (0,1,2,0) + (0,1,0,2)+ 0,1,1,1).

Denote

Fa ...Fm X - [B1(a x +...+ x W 1) - B 1(0iLx1+...+x X 1 0)]
1 m1  111 1 ml 1 a1

+[B2('1x1+'"+a xm i  1 1) - x +...+amx 1 M 0)],

1I 1 BO(a 1 +...+ ix x - 0)]

F a1 0..F m1 Y 2 [B x~x1 +***+a X 1 1) B B(zx+..+a Km 0 )]
1 a 1  [ 10  a1 m I ) - Bi(x+o+m 1 m

-[BI~alXl+''+a mI xml = ) - Bl(alxKm+.+%m1x m  = 0)],

-[B2(alxl+...+ xm 1 1) - B2 c x'...+a X. - 0)]. (3)
2m11m2all 11m
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3. Properties.

In this section the u.e. and n.u.e. factorial effects under D are

given. It is assume that m2 > .

a a

Theorem I. The factorial effects F1 ...F F .F m for
m m1+1 - m

( +i,...,am) * a (1,...,1), am 1,2 and (al,...,a) (0,...,0), are

u.e. under D.

Proof. When (a +a,...,m) *a(I,...,i) and (al,...,am) (0,...,0), it
mm 1 m2 -i

can be seen that 2 3 ruri in a block can be divided into six sets
mi-i 3m2 -2

of 2 3 runs satisfying a x +...+a x u1 and
ImI m m I0

aM1+iXm +1+...+amX m = = 0,1 and u 2 = 0,1,2. It now follows from

a am %F n+I a

(1) and (2) that in E(F a... F F ...F , the block effects cancel
1 mI m 1 +1 m

a aa I  am+ al

and it becomes equal to F II ...F mF +1'.F m This completes the proof.

2
Example 5. In Example 3, the factorial effects Fi, F F F F F3, F

F1  2, 1 2' 3' 3' 4'

F2 , F3F2 , F2 F F F F F2 , F 2FF, F F3F2 , F F2F, FF 2 , FF,4' 3 4' 3 4' 1 3' 1 3~ 1F4, F1F4  1 3 4' 1 3 4' F2 3 $ 23' 24'
2  2  2 2 2 2 2F24' 2 34 , F2F3F4, FIF 2F3, FIF 2F3 , FIF2F4' FiF 2F4 , FIF 2F3F4, F1F2F3F4

are u.e. under D by Theorem 1.

a

Theorem 2. The factorial effects Fa ...F F ...F and
1 m I m+1 m

F ...F 1 F2 ...F2 are n.u.e. under D (i.e., they are confounded with
I " 1 n1+1 m m

blocks in D).
2n1 3m2 -1

Proof. Consider the uth (u = 0,1,2) block in D. Out of 2 3 runs in

tbc -1 3 r2 -1the uth block, 2 3 runs satisfy x1 +...+x = 0 over CF(2) and
I m 1
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x ml+1 •+m OF u over GF(3). The remaining 2m1-13m2-1 runs satisfy

xi+...+X , 1 over GF(2) and xm + 1 +...+xm = u - I over GF(3). Out of

2 3 runs satisfying x +... X = i, i - 0,1, 2 3 runs
1 m I

satisfy al1x+...+amxm 1 J, J - 0,1, and (al,...,am 1

(O,...,O). It is now clear from the definition (2) of

a a m1 +1 a
F ...F F ...F with a + 1 ... =a - a, a - 1,2, that in1 m I 31+1 m 1ll

EFa 1 mF 31+1 a

E ...F F ...F m) the block effects do not cancel. This
mI m+1 m

completes the proof.

Example 6. In Example 3, the factorial effects F 3 F4 , F3F 4 , FIF 3 F4 ,

22 22 22
F2F3F FIF2F3F FIFF4, F2F4 F4 and F1F2F3F4 are not u.e. in addition to

the general mean u.
a aal ml al m

Theorem 3. Under D, F1 ...F X and FI ...Fm1 Y with (al,...,a

(0,...,0), defined in (3) are u.e.

Proof. In the uth 3u 0,1,2) block of D, 2 runs can be divided

into 2 sets of 2ml-1 3 m21 runs each satisfying a1x1 +...+a xm = i, i =

F a m a r

0,1. It now follows from (1) that in E(F1 ...F mIX) and E(F' ...F m  )
1 m11 m I

the block effects cancel. The rest is clear. This completes the proof.

Observe that u, X, Y are confounded with blocks in D. The
a aa 3 m1+1 a

( 2m ( 3-2-l facto:4al effects F I ... F F m +1 .F with
1( am+,...,am) * a(1,...,), a- = 1,2 and (a 1 ,...,am) *(CO,...,0), are
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u.e. under D. The (2 01)2 linear functions of factorial effects

ai a

F .F 1X and F ..OF Y with (a .. are u.e. underFI .. Fm X n 1 .. Fi '''
1 1 1 m

D. The above [3 + (2 m1(32-2)-l) + (2m'-1)2] = 2m 13m 2 linear functions

of factorial effects are othogonal to each other.

4. Relative Efficiency

In this section the relative efficiences of n.u.e. factorial effects

are calculated. First note that

E(F l .Fm F ~ .. .F) = F 1 1.. ci

E( 1a.. F F+1 .. F F 1 *.F~ F +1... Fc + (d 0da da (4)1 1 I mm I m 1 " Fm 0 0 1 1 d 21 2 )'

where do, dI and d2 depends on the values of ci, i = 1,...,'mI and
(%

a, ai = 1,2. The estimator F 1...Fm F ...F is called the unadjusted
1 I iF1 in

estimator of F ...F F .. F and it is denoted by
mi m+1 m

rF 1...F F a .F )  . It can be checked that
m 1 m I +l*** inunadj

S2 m +1 m -I

VarlF .. F I ..Fa) ( 2 for a 1,
I  m I  " unadj a2 2 ml1+1 3m 2fra-2 (5)

2 3 for ci 2.

It can be seen that out of 2
m -1 points (X1 ,..Ox ) satisfying

xi+...+X m 1 0 over GF(2), nou points satisfy xl+...+Xml = u, u - 0,1,2,

over GF(3). Again, out of 21 points (xl,...,x m ) satisfying

X +*..+ = 1 over GF(2), nlu points satisfy x +...+Xl = u, u 0,1,2,

over GF(3). Clearly, n0 0 + n0 1 + n0 2 = n10 + n11 + n 12  2 . It can

be check that
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no(w) , n01 - (3w+
0 w>O w>O

w even integer w odd integer

w> (3w+2) ' O (3w)

w even integer w odd integer

1 W E (3w+ ' n12  (3w+2)"
- w>O w>O

w even integer w odd integer

Under the assumption that the factorial effects FI .. Fm a ..F,

a - 1,2, are negligible, it follows that
M2 -1

(Fl*..F m1F m1+...F m)unadj = 31 [(nlo-n12'00'02)02

+ (n12 1 -11-O2 n0 1 + (n11-nO-nO1+nOO)1O

Sm 2-1
E(F...F F 2 ..F2) d 3 - 10-2n11 +n1-no+2no-n

m1 m1 (1*muaj1 11 0 0 2'

+ (n12-2n10+n1 1-n0 2+2n0 0-n0 1 )81 + (n1 1-2n 12+n 0-nO 1+2n02-no0 )8 ]* (7)

For rai,...,am ) * i,***,i), the adjusted estimators of factorial

a
1e - L~ .a ar

effects F ...F F .. F a re
1 mIm1  1 + m

a a m 1
(F1I ... F 1F a ...-F a) - FlF Fm+ .. d

I  m* +l* madj "F 1  *mI m1+1*m unadj

+ w(F ..F F+1 ... F (F +F F 2(
1F1 m1 m1 + '  m unadj * w2 F1 .. Fm m 1 *+1 m unadj' (

where w I and w2 are constants depending on a and (al,...,am ). Notice E

that under the assumption that F ...F Fa  .F are negligible, the n(I m M1+1*"*

a a

factorial effects -a 1 - Fla *F a (aI,...,),a ) *
F1  "**m I  Fm + ' ' l t+

1 1,u III II
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a I  m a

a - 1,2, are u.e. and the adjusted estimators of F I ...Fm1 m 1 .F F

(a, .... ,am ) * (I,...,i), a - 1,2, are in fact unbiased estimators. The
I

unbiased estimators of factorial effects (except the general mean) are

orthogonal to each other and hence the deletion design is orthogonal

under the assumption that F ...F F a  m..*F a , a  - 1,2, are negligible.I l ml.. m- 1,2 ar elgbe

The effect of adjustment is now evaluated in terms of the variance of the

-estimators. It cn be seen from (8) that for (al,...,c ) ..
I

a ,22ml +13m2- 2 2)

V(F .F a ( + w I + 3w 2 for a 1,

M I  m+' m adj a 22m+13M2-1(3 + w2 + 3w2) for a - 2.
ci

cI mla a1 2c c

The relative efficiency in the estimation of F 1.F I la+...FF F
I m1  m1 m1*

,,..., ) * (1 , . . . , 1) is

a F m IF ~a  WOO a)21 -for a -1,

1(Fi M** m +1F unadj 1 + w+
RE 1(-0 1 1 2

[-- 7for a 2. (10)
V(F "Fo I Fa 1 ...Fa)adj. 3 + w1 + 3w

Notice that 0 < RE < 1. For u.e. factorial effects RE = 1 and for

n.u.e. factorial effects RE < 1. Further the value of E away from I the

more is the effect of the adjustment to the variance of the estimator.

Example 7. In Example 3, mI equals to 2 and moreover, no0  2 () 1,

nl 0, no2 - (2) . 1, n1O - 0, n11 = (2) - 2 and n12 ' 0. Under the

assumption that FIFF3F4 and FIF2 F34 are negligible, it follows from (7)

that
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E(F1F 2 F3 F41unadj 9 (- 8
1 + 50) ,

E(F lF 2F Fd j - 9(- 282 + B + 0o).

It can be seen that

E(FiF3 F4 )unadj - F1F3F4 + 3(- 282 + 1 + O).

Thus

(F 1F 2 F 4 ) adj - (F 1 3F4)unadj 1 2

Therefore, from (8), a 1 1, w - 1 and w 1 0. Hence from (10),

RE-= 1 = 3 - .75.
1+3 (1 2 4

Table 2 presents the values of w, w2 and the relative efficiencies

for factorial effects. It is to be noted that the relative efficiences

for all 6 factorial effects are more than .75 and therefore the adjust-

ments do not have large effects on the variances of the estimators. The

deletion design with such high relative efficiencies can be considered as

a near orthogonal design.
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Table 2

Efficiencies for 2 2x 3 2deletion designs

Factorial
Effects a WIw2R

F F 1 0 .903 43

F F 22 0 1j .903 43

F FF 1 0 1~ .75

F F 2F 2  2 1 0 .75

F F2F2  2 1 0 .752 34
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5. Miscellaneous Results

In this section the case m2 ' 0 i.e., m m is considered for the

sake of completeness. The u.e. and n.u.e. factorial effects for a 2m

deletion design are displayed. It is a feeling that the deletion design

for the case m2 - 0 is of lesser practical importance than the deletion

designs for the case m2 > 0.

Theorem 4. Under a 2m deletion design D, the factorial effects
aI  am
F ...F for all al,...,a are not u.e.1 m m

Proof. First observe that three blocks in D can not be of equal sizes

and therefore the block sizes can not all be even. The rest is clear
a a

from the definition of F 1...F *m . This completes the proof.

Denote the number of nonzero elements in a vector (al...,a ) by

W(Ca1,...,aLm ). For w =0,1,...,m, denote

aI a

A -{F 1 ...F Wal,...,am) = wI. (11)

Notice that A0 consists of the general mean, A1 consists of all main

effects, A2 consists of all two factor interactions and so on.

Theorem 5. For a w (* 0,m) all contrasts of the elements in Aw are u.e.

Proof. Consider two vectors (ai,..oa) and (a*,..Oa* ) so that

W(,...,) w(,..., a* ) = w (* 0). It can now be seen that in

every block, the number of runs satisfying al1 +...+amX - u is exactly

identical to the number of runs satisfying a*x +...+a*x - u for u - 0,1.
1 1 m m

The rest is clear from the definition of factorial effects and the model

(M).
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Example 8. The three blocks in a 24 deletion design are given below.

0 1 1 1 0
Block 01 1 0 10 1 0 1 1

0 0 1 1 1

1 0 0 0 1

Block I 0 1 0 1
0 0 0 0 1
0 0 0 1

1 1 1 0 0 0
Block 2 1 0 0 1 1 0

0 1 0 1 0 10 0 1 0 1 1

Notice that the Blocks 0 and I are of the same size 5 and the Block 2 is

of the size 6. For the set A= {F,F 2 , F 3 ,F2,F 4 ,F21, it follows from

Theorems 4 and 5 that all the elements in A 1 are n.u.e. but every

contrast of elements in A 1 is u.e.

Theorem 6.

a a
(a) For a w, E F 1 ...F is n.u.e, under D.

A m
w

(b) The linear function of factorial effects c0 B0 + c1 B I + c2 B2 with

c0 + c 1 + c2 = 0 is n.u.e. under D.

(c) For a w(* 0,m),

E F 1 a•.Fm + (c0B + c1B + c B)A m 0~ 0 1 1 2B2)

w
with c o + c1 + c2 = 0, is u.e. under D.

Proof. The part (a) can be seen from Theorems 4 and 5. The part (b) is

obvious. The part (c) follows from the block structures in 0. This

completes the proof.
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